Covariate Balance in Simple, Stratified and Clustered Comparative Studies
نویسندگان
چکیده
In randomized experiments, treatment and control groups should be roughly the same—balanced—in their distributions of pretreatment variables. But how nearly so? Can descriptive comparisons meaningfully be paired with significance tests? If so, should there be several such tests, one for each pretreatment variable, or should there be a single, omnibus test? Could such a test be engineered to give easily computed p-values that are reliable in samples of moderate size, or would simulation be needed for reliable calibration? What new concerns are introduced by random assignment of clusters? Which tests of balance would be optimal? To address these questions, Fisher’s randomization inference is applied to the question of balance. Its application suggests the reversal of published conclusions about two studies, one clinical and the other a field experiment in political participation.
منابع مشابه
Investigation on Reliability Estimation of Loosely Coupled Software as a Service Execution Using Clustered and Non-Clustered Web Server
Evaluating the reliability of loosely coupled Software as a Service through the paradigm of a cluster-based and non-cluster-based web server is considered to be an important attribute for the service delivery and execution. We proposed a novel method for measuring the reliability of Software as a Service execution through load testing. The fault count of the model against the stresses of users ...
متن کاملA positive stable frailty model for clustered failure time data with covariate-dependent frailty.
Summary In this article, we propose a positive stable shared frailty Cox model for clustered failure time data where the frailty distribution varies with cluster-level covariates. The proposed model accounts for covariate-dependent intracluster correlation and permits both conditional and marginal inferences. We obtain marginal inference directly from a marginal model, then use a stratified Cox...
متن کاملThe z-difference can be used to measure covariate balance in matched propensity score analyses.
OBJECTIVES The propensity score (PS) method is increasingly used to assess treatment effects in nonrandomized trials. Although there are several methods to use the PS for analysis, matching treated and untreated patients by the PS is recommended by most researchers among other reasons because this allows assessing covariate balance before and after matching. Although the standardized difference...
متن کاملBalanced Acceptance Sampling+m: A Balance Between Entropy and Spatially Balance
Balanced acceptance sampling is a relatively new sampling scheme that has potential to improve the efficiency of spatial studies. There are two drawbacks of the design, it can have low entropy and some of the unbiased estimates can not be calculated. In this paper, such shortcomings have been addressed by integrating simple random sampling with balanced acceptance sampling. In a simulation stud...
متن کاملSecond-order estimating equations for the analysis of clustered current status data.
With clustered event time data, interest most often lies in marginal features such as quantiles or probabilities from the marginal event time distribution or covariate effects on marginal hazard functions. Copula models offer a convenient framework for modeling. We present methods of estimating the baseline marginal distributions, covariate effects, and association parameters for clustered curr...
متن کامل